

High Availability Firewalls using OpenBSD pf,

pfsync and CARP

Athabasca University

MSc-IS Program

COMP503: Information Technology Hardware and Software

Allen Pomeroy

ID: 8702235

March 11, 2006

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 2 / 28 4/5/2006

1. Management Overview

With the importance of the firewall as a key security tool to enforce information security policy, most

organizations rely on commercial offerings which provide stateful connection control, network and port

address translation (NAT/PAT), and in many cases built in intrusion detection (IDS) or intrusion prevention

(IPS) features. These critical security devices present a single point of failure in an organizations

connection to the Internet, extranets, and partitioned internal networks, yet since redundancy options in

most commercial products are expensive, many organizations choose not to implement any form of

redundancy at this network layer. The use of lower service options, such as vendor service level

agreements, and even cold sparing where standby parts are kept on the customer site, still result in loss of

network connectivity when the security device fails. With the increased dependence on network

connectivity for geographically diverse communication and collaboration, failure of a security control

device could have a significant negative financial impact due to lost productivity or missed opportunities.

The ideal outcome during a firewall failure is to have an alternate firewall take over the extended

configuration of the failed firewall, and allow all existing connections to continue as if nothing had failed.

To accomplish this, all existing connections must be maintained and new connections must be subject to the

same security and routing policy that existed on the primary firewall.

This paper will discuss the business level design requirements for a highly available firewall service, an

overview of the technical components used in the overall architecture of a solution, and a detailed analysis

of the components used in the solution. The use of open source technology will be explored, as an effective

replacement for commercial systems costing many tens of thousands of dollars, enabling the use of high

availability technology on an economically inexpensive basis. To provide a complete solution using open

source technology, multiple projects will need to be integrated.

Discussion of the OpenBSD operating system, pf packet filter, pfsync/CARP high availability components,

and FWBuilder GUI project will illustrate a viable alternative to commercial firewall implementations

costing several tens of thousands of dollars, bringing highly available firewall services to home based and

SMB organizations.

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 3 / 28 4/5/2006

Table of Contents

Contents

1. Management Overview ... 2
2. Introduction... 3

2.1. Technical Problem .. 3
2.2. Business Requirements ... 3
2.3. Target Service Levels... 3

3. Designing the Solution... 3
3.1. Overall Design Assumptions ... 3
3.2. Security Policy Enforcement.. 3
3.3. High Availability ... 3

3.3.1. IP and MAC Address Failover .. 3
3.3.2. Configuration of CARP .. 3
3.3.3. pfsync for Connection State Table Synchronization.. 3

3.4. Management.. 3
3.5. Implementation.. 3

3.5.1. Hardware Used... 3
3.5.2. Server Configuration.. 3
3.5.3. Packet Filter Logging ... 3

4. Solution Benefit Summary .. 3
A. References .. 3
B. Operating System Security ... 3
C. Network Interface Redundancy ... 3

Tables

Table 1 - Business Requirements - Protocols ... 3
Table 2 - fw1 Interface Assignments... 3
Table 3 - fw2 Interface Assignments... 3
Table 4 - CARP Interface Definitions (/etc/hostname.carpx) ... 3

Figures

Figure 1 - CARP and pfsync Filter Rules.. 3
Figure 2 - Firewall Architecture .. 3
Figure 3 - FWBuilder GUI Interface... 3
Figure 4 - Interface Policy... 3
Figure 5 - Firewall NAT/PAT Rules ... 3
Figure 6 - Firewall Configuration in FWBuilder .. 3
Figure 7 - Firewall Cables and Cable Harness .. 3
Figure 8 – Logical Network Diagram ... 3
Figure 9 - Security Manager Log Data .. 3

Listings

Listing 1 - fw1 CARP configuration.. 3
Listing 2 - fw2 CARP configuration.. 3
Listing 3 - Primary firewall interface state (fw1) ... 3
Listing 4 - Backup firewall interface state (fw2) ... 3

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 4 / 28 4/5/2006

2. Introduction

2.1. Technical Problem

Many organizations have increased their reliance on firewall technology to block unwanted traffic, even

between internal organization networks. Network firewalls are used to ensure only authorized traffic is

allowed to enter or leave the networks that the firewalls protect. Firewalls can operate as either routers or

bridges filtering packets against a set of rules that comprise the security policy that an owner has chosen to

enforce. By applying a security policy to the packets attempting to traverse a network, the firewall reduces

the exposure of the protected network segment to potentially malicious or unauthorized traffic.

There are two main techniques used by firewalls to enforce policy. Simple packet filtering is used to deny

access to certain services, but its use is usually limited to protecting external network components such as

routers or switches
1
 since it cannot be used to track the complex relationships seen in upper layer protocols.

Packet filtering operates on individual packets without regard for previous or subsequent packets that may

be seen. Only information from the packet being evaluated is used to make a decision on the packet

disposition, and typically only includes examination of the packet header information. Common uses

include deployment on routers or other network perimeter devices to give protection from IP address

spoofing
2
 or denial of service (DoS) attacks

3
. The use of packet filtering does not introduce a single point

of failure itself, as the packet filtering code does not keep any state on packets that it has allowed or

dropped, and can be deployed on multiple devices to ensure alternate network paths are available to provide

service should one network component fail.

The second technique used by firewalls to enforce security policy is stateful or dynamic packet filtering.

Stateful packet filtering evaluates a packet based on header information, connection contextual information,

and possibly deep inspection of the packet payload, to make a determination of whether to pass or drop the

packet. Once evaluation of a rule set has resulted in the decision to pass a packet, information about that

packet is inserted into an in memory connection state table. With the addition of the connection state table,

filtering decisions are based on both firewall rule sets, and context built by packets that have passed through

the firewall previously. To maintain connection context information, stateful filtering techniques manage

this dynamic table of information about connections and related flows of traffic, inserting and removing

entries from this connection state table as authorized connections are built up and torn down. As packets

arrive at the policy enforcement point, header information in the packet is checked against the state table. If

the packet matches an established connection in the state table, further policy evaluation is bypassed, the

packet is forwarded, and the connection table is updated. Use of the state table to maintain connection

information allows the firewall to also track connectionless protocols such as UDP and ICMP. If the packet

does not match any entry in the state table, it is checked against the rule set contained on the firewall. The

disposition of the packet is controlled by the results of checking the rule set, including inserting an entry in

the connection state table if the packet matches a rule allowing passage. This use of an in memory

connection state table to screen packets is significantly faster than checking packets against a rule set
4
.

Although the use of a connection state table significantly increases the protection afforded by the firewall, it

also introduces complications, which need to be addressed, in order to mitigate the single point of failure

1
 Router Security Configuration Guide, National Security Agency, December 2005,

http://www.nsa.gov/snac/routers/C4-040R-02.pdf, pg 39
2
 Packet spoofing is defined as packets with source addresses that are improbable, such as a packet with a

source address of an internal network arriving inbound at an external network interface. [add sans/nist

definition]
3
 Router Security Configuration Guide, National Security Agency, December 2005,

http://www.nsa.gov/snac/routers/C4-040R-02.pdf
4
 Design and Performance of the OpenBSD Stateful Packet Filter (pf), Daniel Hartmeier,

http://www.benzedrine.cx/pf-paper.html, Section 5: Conclusions

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 5 / 28 4/5/2006

introduced by firewalls operating inline between network segments. Rule sets used to enforce security

policy can be easily replicated across parallel firewalls, but replication of the in memory connection state

table is required to avoid service interruptions to existing connections during a firewall failure. Also

required to provide service transition to an alternate firewall is IP and MAC address failover, allowing

virtually uninterrupted network traffic flow. This paper will discuss the technology and techniques that can

be used to overcome these complications and design a highly available firewall service that can meet the

following stringent business requirements.

2.2. Business Requirements

Authorized services that traverse the network must not be excessively impacted by a firewall failure. The

detailed business requirements can be translated to a number of network services that need to be protected

from firewall server failure. Note these services themselves may not be configured to be highly available,

only their transit through the firewall is to be covered in this paper.

The following table describes the services to be covered by this solution. External access to the DMZ,

internal access to the DMZ, and internal access to external networks need to be covered by this solution.

Connection Oriented Protocols

(TCP based)

Connectionless Oriented Protocols

(UDP, ICMP)

HTTP

HTTPS

SMTP

IMAP

IMAPS

SSH

DNS

syslog

Various custom TCP based services

syslog

DNS

icmp type 8 (echo)

icmp type 0 (echo response)

Out of Scope Functions Comments

VPN Tunnels/Protocols Application protocol level support required

FTP Protocol Application level proxy required, insecure protocol

Dynamic Port based Applications

(ICQ, IM)

Application level proxy required

Table 1 - Business Requirements - Protocols

2.3. Target Service Levels

For all included services, the solution must have the following attributes:

• Allow the use of up to 255 virtual IP addresses

• Employ less than 5 second failover with no established connection loss

• Scheduled or unscheduled maintenance must not incur any service outage

• Maximum window of exposure for rule set synchronization is 15 minutes

• Maximum sustained traffic throughput required is 1.5Mbps Internet traffic and 50Mbps internal to

DMZ traffic

• All firewall policy (rule set) management must be through a GUI on a remote administration

workstation

• Employ low cost hardware (x86 or SPARC)

• Employ open source software

3. Designing the Solution

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 6 / 28 4/5/2006

The high availability design considered in this paper only focuses on the firewall, although extending this

scope to the perimeter Internet and extranet feeds, edge connection devices, and core networks, is a logical

next phase. Employing multiple firewalls as a clustered group is possible with the HA software used in this

paper, however only two firewalls are shown as our business requirements can be met with a firewall pair.

The firewall solution in this paper is divided into four components:

• Overall Design Assumptions – Restrictions and Design Decisions

• Security Policy Enforcement – Packet inspection and filtering

• High Availability – Clustering of firewall services to withstand failures

• Management – Easy security policy management

Throughout each component, design decisions have been made with reference to industry best practices

established by recognized computer network security authorities such as NIST
5
, NSA

6
, and SANS

7
.

3.1. Overall Design Assumptions

Although this paper discusses the integration of open source projects, the reader needs to be familiar with

how to build and install OpenBSD software, as well as have a sufficient understanding of network routing

and Ethernet traffic flow. Section 3.5 Implementation gives an outline of issues that need to be addressed

and steps required to build the solution presented in this paper.

The network switching fabric was designed to intentionally use hardware separation for the subnets,

avoiding the use of VLAN technology for security policy enforcement. Only network zones at the same

security level can use VLAN technology and share the same physical switch. Networks with differing

security levels must use physically separate switches, to ensure no possibility of employing VLAN hopping

techniques
8
 to evade security policy.

OpenBSD
9
 was selected as the operating system for use on the firewall servers. Not only is OpenBSD a

highly secure OS
10

, it is also the crucial foundation for the HA components selected for this solution. The

man pages within OpenBSD are an excellent source of information, and contain many how-to-use examples.

The reader is encouraged to read the man pages to gain a deeper understanding of the technical issues

discussed in this paper
11

. The firewall cluster configuration is based on a pair of firewall servers, fw1 as the

primary firewall, and fw2 as the alternate firewall. Refer to the logical and physical architecture diagrams

(Figure 2 and Figure 8) while reading the following design description. It is assumed that the reader has

followed the Operating System Security links at the end of this paper to harden the OpenBSD servers used

for the firewall services.

The following tables specify the network parameters assigned to each firewall server in the cluster.

 Sync External DMZ Internal

5
 US National Institute of Standards and Technology (www.nist.gov)

6
 US National Security Agency (www.nsa.gov)

7
 System and Network Security organization (www.sans.org)

8
 VLAN Hopping Considerations, General Design Considerations, Windows IT Library,

http://www.windowsitlibrary.com/Content/1110/06/2.html
9
 http://www.openbsd.org

10
 http://www.openbsd.org/security.html

11
 Traditional *nix man (manual) pages were not very helpful, normally only providing terse and often

circular references. By contrast, the OpenBSD man pages often contain extended descriptions and useful

examples.

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 7 / 28 4/5/2006

Hostname fw1sync fw1ext fw1dmz fw1int

Network

Address

10.0.120.0/24 1.2.3.160 / 27 192.168.1.0 / 24 192.168.2.0 / 24

Physical

Interface

xl3 xl0 xl1 xl2

Physical IP

Address

.253 .175 .253 .253

Table 2 - fw1 Interface Assignments

 Sync External DMZ Internal

Hostname fw2sync fw2ext fw2dmz fw2int

Network

Address

10.0.120.0/24 1.2.3.160 / 27 192.168.1.0 / 24 192.168.2.0 / 24

Physical

Interface

xl3 xl0 xl1 xl2

Physical IP

Address

.252 .176 .252 .252

Table 3 - fw2 Interface Assignments

Refer to Figure 8 – Logical Network Diagram for an illustration of the final firewall server pair network

configuration.

3.2. Security Policy Enforcement

Features that this component must provide include packet inspection and filtering on all network interfaces

on the firewall servers, according to the installed security policy or rule set. Whenever the rule set

specifies, this component must also provide full logging capabilities.

The software selected to provide this component is the OpenBSD Packet Filter (pf)
12

, which provides

stateful filtering of common IP traffic, such as TCP, UDP, ICMP, as well as Network Address Translation

(NAT). pf is an excellent choice for this component, as it has many advanced features to normalize and

condition TCP/IP traffic, such as resolving overlapping TCP segments and packet de-fragmentation prior to

rule set processing. pf also provides bandwidth control and packet prioritization or queue control features,

although they are not explored in this paper.

In this paper, only the highlights of pf will be covered, as the focus is mainly the HA components of this

solution, and the security policy will be managed exclusively through the GUI management interface. The

reader is encouraged to obtain and read the pf documentation for more in-depth coverage of this software
13

.

The features of pf that are used in this solution include stateful packet filtering, using the keep state

keywords, network address translation (NAT) to map internal private addresses to public internet routable

addresses, packet normalization to drop packets with incorrect flag usage and defragment packets before

processing with the rule set, as well as extensive packet traffic logging. No application proxies are

configured to assist in securely handling complex protocols such as FTP, although these capabilities exist

within pf. Also no VPN configuration is addressed in this paper, although pf can handle virtually any IP

protocol.

The operation of pf is controlled by a configuration file, typically located at /etc/pf.conf, that contains

both pf directives and filtering rules. In the configuration of this solution, all pf configuration is done

12

 ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf
13

 http://www.openbsd.org/faq/pf/

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 8 / 28 4/5/2006

through the FWBuilder GUI interface, with the resulting pf.conf file transferred to the target firewall via

an scp transfer.

Refer to Figure 2 - Firewall Architecture for an illustration of where the pf component is employed in the

final solution.

3.3. High Availability

The high availability (HA) component of the solution is the most complex due to several advanced feature

requirements. Continued service availability in the case of firewall server failure can be handled in several

ways, each with progressively shorter mean-time-to-repair (MTTR) cycles. These scenarios can be

depicted in an inverted pyramid illustration:

Typical MTTR Service Complexity Typical Cost
14

 Technique

Seconds Uninterrupted Very High Very High Clustering

< 15 Minutes Interrupted High High Automated Scripts

2-4 Hours Interrupted Moderate Moderate Manual Swap

using Cold Spares

1-2 Days Interrupted Low Low Vendor SLA

Due to the increase in functionality when layering HA features onto a solution, the complexity also

increases. Referring to stability of network systems, “Complexity is the enemy.”
15

, as stated by David

Willis in Packet Magazine. To avoid the pitfalls of complexity, we employ a solution that is well designed,

based on features that will interoperate well to attain the level of HA we need. Also to alleviate the dangers

of complexity will be automation – as many of the failover processes will be automated as possible.

Using the resiliency features of TCP, which will retransmit small numbers of lost packets, a solution can be

built that offers the perception of uninterrupted service through the firewalls. For the purposes of this

paper, the assumption is made that other connectionless protocols will handle lost packets at the application

layer, such as DNS query retries. With the resiliency features of the protocols we are passing through the

firewalls, and a failover solution that will resume service in a short enough time frame to avoid application

connectivity timeouts, we can provide the user with the perception of nearly 100% availability. Testing

with the final solution involved establishing stream based service connections through the firewall pair, and

invoking various forms of failure, including physically disconnecting interfaces and firewall server reboots.

All established and new connections continued operating as required, with only a small (less than 5 second)

lag noticeable to the end user.

14

 Commercial magnitude of order costs, based on author’s industry experience
15

 David Willis, Chief of Communications Research, Gartner, Cisco Packet Magazine, First Quarter 2006, pg

30

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 9 / 28 4/5/2006

3.3.1. IP and MAC Address Failover

IP and Ethernet MAC address failover is the foundation of the HA services. In the case of a failure of the

primary firewall server or one of its interfaces, the well known IP addresses in use on the firewall must

move to an alternate firewall server. Although gratuitous address resolution protocol (ARP) broadcasts will

allow the use of a new MAC address, the solution used in this paper also fails over the MAC address to

speed the resumption of service. This technique of using floating IP and MAC addresses allows the firewall

service to migrate to alternate servers as needed to maintain the target service level.

During the research of solutions, two open source implementations of redundancy protocols were found that

could handle the management of IP and MAC addresses. The heartbeat
16

 project uses the Cisco Virtual

Router Redundancy Protocol (VRRP) to advertise and elect a primary among several physical candidates.

While this product was tested and found to be an acceptable solution, there exists a possibility of patent

infringement as Cisco maintains a patent on the VRRP protocol. Although Cisco has publicly committed to

allow free use of VRRP, the caveat they place on its use prompted a search for an alternative. The

developers of OpenBSD have created a public domain equivalent of VRRP called Common Address

Redundancy Protocol (CARP)
17

. CARP solved some of the technical problems with VRRP and also

mitigated the possibility of future patent infringement faced by product developers using VRRP
18

.

Readers who are familiar with VRRP will find the following significant advantages of the CARP protocol

implementation
19

:

• Address family independent, supporting both IPv4 and IPv6 as both the transport for CARP traffic

as well as the floating addresses

• CARP has an “arpbalance” feature which allows multiple hosts to share a single IP address

concurrently. This feature can be used to provide a form of load balancing and service resiliency

on servers behind a firewall. This feature is not employed in this paper.

• Cryptographically strong SHA-1 HMAC to protect each CARP advertisement

As there are multiple firewall servers to provide service should a component of the primary firewall fail, this

paper does not address network interface redundancy
20

, although would be required when expanding the

HA scope past the firewall servers to encompass the network switching fabric connecting to the firewalls.

In this design, switches and routers used to connect the firewalls to the various network segments are still

single points of failure.

3.3.2. Configuration of CARP

CARP functionality is employed by establishing CARP interfaces. Similar to bringing up Ethernet

interfaces on OpenBSD, CARP interfaces are configured either through a /etc/hostname.carpx file or the

ifconfig command.

From the CARP man page:

A carp interface can be created at runtime using the ifconfig carpN create command or

by setting up a hostname.if(5) configuration file for netstart(8).

16

 http://linux-ha.org/HomePage
17

 http://www.openbsd.org/faq/faq6.html#CARP
18

 Reference to VRRP patent infringement danger, http://www.openbsd.org/faq/faq6.html#CARP
19

 Paraphrased from “Firewall Failover with pfsync and CARP”, Ryan McBride,

http://www.countersiege.com/doc/pfsync-carp/, pg 2
20

 Refer to the appendix Interface Redundancy for information on changes that would be required to

introduce network fabric resiliency.

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 10 / 28 4/5/2006

To use CARP, the administrator needs to configure at minimum a common virtual host ID

and virtual host IP address on each machine which is to take part in the virtual group.

Additional parameters can also be set on a per-interface basis: advbase and advskew,

which are used to control how frequently the host sends advertisements when it is the

master for a virtual host, and pass which is used to authenticate CARP advertisements.

These configurations can be done using ifconfig(8), or through the SIOCSVH ioctl.

It is important to note that starting in OpenBSD 3.5, the CARP implementation includes the logic to

automatically increase the advskew for any node which has suffered link loss on any network interface. The

effect of this is to decrease the advertisement frequency of a node with a failed network interface, thereby

forcing the node to lose the next CARP election and give up its primary role. This election process can

complete in as little as 3 seconds, providing a fast failover of an entire firewall in the case that only one

network interface fails.

Configuration of failover behavior with CARP allows two methods of operation, either with or without pre-

emption. The CARP protocol primary server broadcasts CARP advertisement messages via multicast using

IP protocol number 112 (CARP). The alternate servers listen for this broadcast, and if it stops, the alternate

servers will begin broadcasting advertisements. The server which advertises the most frequently will most

likely be elected the new primary. The frequency of CARP advertisements can be controlled through the

use of the advbase and advskew parameters.

Preemption can be enabled to make a specific firewall server the primary firewall whenever it is operating

normally. This is configured in the design discussed in this paper, although there are published opinions

which subscribe to the philosophy that when a failover has occurred, the new primary server should remain

the primary until it fails. This results in a primary server transition only on primary failure, and in the

opinion of the author, the primary server should be a single designated server to allow for easier monitoring

and reporting. Preemption mode can be enabled through the following sysctl setting on all firewall servers:

/etc/sysctl.conf: net.inet.carp.preempt=1

With preemption enabled, the server which is intended to be the primary needs to have the lowest advskew

value, and is typically 0. The primary server (fw1) has a CARP advskew value of 0, while the alternate

server (fw2) has an advskew value of 150.

Refer to Figure 2 - Firewall Architecture for an illustration of where the CARP component is employed in

the final solution. Refer to Listing 1 for fw1 CARP configuration and Listing 2 for fw2 CARP

configuration.

 CARP IP vhid advskew passwd

External Network – VLAN2 (1.2.3.160 / 27) Network 1.2.3.160 Broadcast 1.2.3.191

carp101 .180 101 fw1=0 fw2=150 s2948f2d8d

carp102 .181 102 fw1=0 fw2=150 j20sj3us40

carp103 .182 103 fw1=0 fw2=150 2-s89f782a

carp104 .183 104 fw1=0 fw2=150 uiS923-aDj

DMZ Network – VLAN3 (192.168.1.0/24) Network 192.168.1.0 Broadcast 192.168.1.255

carp111 .1 111 fw1=0 fw2=150 kLSU710A8f

carp112 .254 112 fw1=0 fw2=150 XJdu8a67s0

Internal Network – VLAN4 (192.168.2.0/24) Network 192.168.2.0 Broadcast

192.168.2.255

carp121 .1 121 fw1=0 fw2=150 Kmm7a-f-s8

carp122 .254 122 fw1=0 fw2=150 Jhi-8aF8SD

 Table 4 - CARP Interface Definitions (/etc/hostname.carpx)

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 11 / 28 4/5/2006

As shown in Figure 2 - Firewall Architecture, the pf policy enforcement component protects all of the

network interfaces on the firewall. Due to this filtering, although CARP uses cryptographic hashing to

protect the CARP advertisements, specific pf rules must be installed to allow the CARP broadcast traffic to

pass. This improvement in security is especially necessary on the external and DMZ interfaces, to ensure

co-existing or malicious CARP broadcasts are ignored.

Figure 1 - CARP and pfsync Filter Rules, show an example of the pf rule to allow CARP traffic through on

the dedicated pfsync interface. Similar rules are required for all of the interfaces that CARP traffic will be

encountered on. Generic raw pf rules to allow CARP traffic would look like:

pass on { xl0 xl1 xl2 xl3 } proto carp keep state

Figure 1 - CARP and pfsync Filter Rules

3.3.3. pfsync for Connection State Table Synchronization

Employing pf to protect the network interfaces on each firewall and CARP to provide resilient IP/MAC

address transition between firewall servers, results in a configuration that will have a very short (typically

less than 5 seconds) MTTR. This configuration will address all but one of the original business

requirements – uninterrupted existing connections. With the current configuration, in the case of a firewall

server failure, the alternate firewall will promote itself to be the primary firewall within the desired service

level. All new connections established through the new primary firewall will function as expected as long

as the pf rule sets are synchronized on both firewall servers. Existing connections will still be dropped, as

the new primary firewall only sees them as in-progress connections that it does not have listed in its in

memory connection state table.

pfsync is a component of OpenBSD which provides near real-time synchronization of the connection state

table, preserving established connections in the case of a primary firewall failure. pfsync performs a

multicast broadcast using IP protocol 240 (pfsync) to transfer state insertion, deletion, and update activity to

all participating alternate firewall servers. The receiving firewall servers listen for these messages and

dynamically modify their connection state tables to allow uninterrupted operation of established

connections in the case any of the receiving servers are promoted to be the primary firewall.

As there is no significant security employed within the pfsync protocol, a dedicated layer 2 connection must

be provided for secure connection state table updates. The lack of authentication and privacy features in the

pfsync protocol was initially to provide for very low latency in transmission of state table updates. With the

firewall pair shown in this solution, an Ethernet cross-over cable was used to connect the xl3 interface on

each server.

Similar to regular Ethernet and CARP interfaces, the pfsync mechanism is brought up by configuring the

pfsync interface, with a configuration file like:

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 12 / 28 4/5/2006

/etc/hostname.pfsync0: up syncif xl3

Figure 1 - CARP and pfsync Filter Rules shows the rules used to allow pfsync protocol traffic only on the

dedicated pfsync interfaces (xl3). Generic raw pf rules to allow pfsync traffic would look like:

pass quick on { xl3 } proto pfsync

Note that the pf key words “keep state” are not used for pfsync traffic, as it is connectionless broadcast

traffic. Listing 1 - fw1 CARP configuration and Listing 2 - fw2 CARP configuration show the CARP

interface definition files (/etc/hostname.carpx).

Figure 2 - Firewall Architecture

CARP configuration files for all floating IP addresses are shown below and reside in /etc on each firewall

server. Note that since this solution is using pre-emption, the configuration files differ between the primary

and alternate firewall. Elements in the configuration file (left to right):

• protocol family (IPv4)

• Virtual IP address

• Subnet mask

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 13 / 28 4/5/2006

• Broadcast address

• Virtual CARP ID keyword and number

• CARP Advertisement skew keyword and value (Alternate server only)

• CARP Password keyword and value

hostname.carp101

inet 1.2.3.180 255.255.255.224 1.2.3.191 vhid 101 pass s2948f2d8d

hostname.carp102

inet 1.2.3.181 255.255.255.224 1.2.3.191 vhid 102 pass j20sj3us40

hostname.carp103

inet 1.2.3.182 255.255.255.224 1.2.3.191 vhid 103 pass 2-s89f782a

hostname.carp104

inet 1.2.3.183 255.255.255.224 1.2.3.191 vhid 104 pass uiS923-aDj

hostname.carp111

inet 192.168.1.1 255.255.255.0 192.168.1.255 vhid 111 pass kLSU710A8f

hostname.carp112

inet 192.168.1.254 255.255.255.0 192.168.1.255 vhid 112 pass XJdu8a67s0

hostname.carp121

inet 192.168.2.1 255.255.255.0 192.168.2.255 vhid 121 pass Kmm7a-f-s8

hostname.carp122

inet 192.168.2.254 255.255.255.0 192.168.2.255 vhid 122 pass Jhi-8aF8SD

Listing 1 - fw1 CARP configuration

hostname.carp101

inet 1.2.3.180 255.255.255.224 1.2.3.191 vhid 101 advskew 150 pass s2948f2d8d

hostname.carp102

inet 1.2.3.181 255.255.255.224 1.2.3.191 vhid 102 advskew 150 pass j20sj3us40

hostname.carp103

inet 1.2.3.182 255.255.255.224 1.2.3.191 vhid 103 advskew 150 pass 2-s89f782a

hostname.carp104

inet 1.2.3.183 255.255.255.224 1.2.3.191 vhid 104 advskew 150 pass uiS923-aDj

hostname.carp111

inet 192.168.1.1 255.255.255.0 192.168.1.255 vhid 111 advskew 150 pass kLSU710A8f

hostname.carp112

inet 192.168.1.254 255.255.255.0 192.168.1.255 vhid 112 advskew 150 pass XJdu8a67s0

hostname.carp121

inet 192.168.2.1 255.255.255.0 192.168.2.255 vhid 121 advskew 150 pass Kmm7a-f-s8

hostname.carp122

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 14 / 28 4/5/2006

inet 192.168.2.254 255.255.255.0 192.168.2.255 vhid 122 advskew 150 pass Jhi-8aF8SD

Listing 2 - fw2 CARP configuration

3.4. Management

To simplify writing and management of the firewall Security Policy, a Graphical User Interface (GUI) will

be used on an administrator workstation. Firewall Builder
21

 (FWBuilder) is a multi-firewall configuration

and management interface that allows administrators to apply a common policy to disparate underlaying

firewall technology. Although in this paper the administrator workstation is configured as a desktop

running Microsoft Windows, FWBuilder is supported on most major distributions of Linux and BSD as

well.

FWBuilder is comprised of a GUI to build an abstract firewall rule set, an object oriented rule and entity

store, and a variety of compilers to convert the vendor neutral rule set into a rule set suitable for the target

firewall platform. Policy editing is simple and intuitive with the use of drag and drop operations. The

FWBuilder project maintains policy compilers for a variety of firewall platforms including iptables, IP

Filter, OpenBSD pf, and Cisco PIX. Employing these underlaying policy compilers allow the application of

the same rule set to differing firewall platforms, allowing the ability to centralize policy management, and

ease migration to different platforms.

From the FWBuilder web site:

Firewall Builder allows for management of multiple firewalls using the same network

object database. Change made to an object is immediately reflected in the policy of all

firewalls using this object. Administrator only needs to recompile and install policies on

actual firewall machines.

In Firewall Builder, administrator works with an abstraction of firewall policy and NAT

rules; software effectively "hides" specifics of particular target firewall platform and helps

administrator focus on implementation of security policy. Backend software components,

or policy compilers, can deduct many parameters of policy rules using information

available through network and service objects and therefore generate fairly complex code

for the target firewall, thus relieving administrator from having to remember all its details

and limitations. Policy compilers can also run sanity checks on firewall rules and make

sure typical errors are caught before generated policy is deployed.

The packet filtering rule set used is shown in Figure 3 - FWBuilder GUI Interface, while the NAT and PAT

translation is shown in Figure 5 - Firewall NAT/PAT Rules. Both the Policy and NAT tabs within

FWBuilder specify global policy. These rules are not constrained by any specific network interface, but

operate after evaluation of rules specific to each interface have been evaluated. FWBuilder also provides

the ability to specify rules which operate on individual physical interfaces. These tabs are typically used

only for anti-spoofing or fine grained global policy exceptions, such as allowing CARP or pfsync traffic –

as shown in Figure 4 - Interface Policy.

21

 http://www.fwbuilder.org

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 15 / 28 4/5/2006

Figure 3 - FWBuilder GUI Interface

Figure 4 - Interface Policy

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 16 / 28 4/5/2006

Figure 5 - Firewall NAT/PAT Rules

Configuration of the OpenBSD pf parameters is done through drilling into the desired firewall object and

selecting each of the configuration tabs:

Figure 6 - Firewall Configuration in FWBuilder

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 17 / 28 4/5/2006

3.5. Implementation

3.5.1. Hardware Used

The hardware that was selected for the new firewall servers consists of two Compaq AP550 workstations

with 1GHz Intel CPU, 256MB memory, 9GB hard disk, and 4x 3C905 100Mbps Ethernet NICs. Each

firewall machine is located in a separate rack to take advantage of the independent 20A 1 hour UPS units in

each rack. With each rack having dedicated switches for each security domain and a dedicated UPS, there

is no single point of failure within the servers across both racks. With a moderate policy size of 25

global rules, 25 global NAT rules, and less than 10 individual interface rules, traffic to the Internet feed can

saturate the link and still have almost 75% CPU capacity remaining.

Installing the servers across two racks quickly revealed a potential management challenge with cable

management. To avoid confusion during future upgrade work, network security zones were assigned colors

as follows:

Network Security Zone Cable Colour

External Networks Red

DMZ Networks Yellow

Internal Networks Green

Synchronization Networks White

Trunk Cables between Racks Orange

This is illustrated in Figure 7 - Firewall Cables and Cable Harness.

Figure 7 - Firewall Cables and Cable Harness

The final network architecture is illustrated in Figure 8 – Logical Network Diagram.

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 18 / 28 4/5/2006

Figure 8 – Logical Network Diagram

3.5.2. Server Configuration

All initial installation and configuration of the hardware and the software was done in complete physical

isolation from any networks, including both internal and especially external networks. Only after the

operating system was fully configured, including the following base firewall rule set, which allows only

administrative SSH access, were the firewalls connected to the internal networks for testing. After

vulnerability testing using nmap
22

 and Nessus
23

 security tools revealed no weaknesses, the firewalls were

attached to the external networks as well.

The OpenBSD operating system was installed on both firewalls, with the same configuration. Most of the

installation defaults were taken, and only minimal software (base) was loaded to improve security.

Post Installation Customization

22

 http://www.insecure.org/nmap/
23

 http://www.nessus.org/

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 19 / 28 4/5/2006

Activation of pf on boot is enabled by adding

 pf=YES

to the configuration file /etc/rc.conf.local. Any system configuration changes should be done using this

file, which is preserved across system upgrades.

CARP pre-emption is enabled by adding

 net.inet.carp.preempt=1

to the system configuration file /etc/sysctl.conf.

Activation of network interfaces is enabled through /etc/hostname.if files, which give OpenBSD enough

information to create a network device and bring up the interface. Listing 1 and Listing 2 show the

hostname files for each CARP interface. After each firewall has the physical and CARP interfaces defined,

the network interfaces will look like what is shown in Listing 3 and Listing 4.

Abbreviated listings
24

:

Listing 3 - Primary firewall interface state (fw1)

fw1# ifconfig -a

xl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:64:46:1f

 media: Ethernet autoselect (10baseT)

 status: active

 inet 1.2.3.175 netmask 0xffffffe0 broadcast 1.2.3.191

xl1: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:1f:b5:98

 media: Ethernet 100baseTX full-duplex

 status: active

 inet 192.168.1.253 netmask 0xffffff00 broadcast 192.168.1.255

xl2: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:04:b0:a6:56

 media: Ethernet 100baseTX full-duplex

 status: active

 inet 192.168.2.253 netmask 0xffffff00 broadcast 192.168.2.255

xl3: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:12:cc:3b

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 10.0.120.253 netmask 0xffffff00 broadcast 10.0.120.255

pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33224

pfsync0: flags=41<UP,RUNNING> mtu 1348

 pfsync: syncif: xl3 syncpeer: 224.0.0.240 maxupd: 128

carp101: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 101 advbase 1 advskew 0

 inet 1.2.3.180 netmask 0xffffffe0

carp102: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 102 advbase 1 advskew 0

 inet 1.2.3.181 netmask 0xffffffe0

carp103: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 103 advbase 1 advskew 0

24

 Command output has been trimmed to conserve page space

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 20 / 28 4/5/2006

 inet 1.2.3.182 netmask 0xffffffe0

carp104: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 104 advbase 1 advskew 0

 inet 1.2.3.183 netmask 0xffffffe0

carp111: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 111 advbase 1 advskew 0

 inet 192.168.1.1 netmask 0xffffff00

carp112: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 112 advbase 1 advskew 0

 inet 192.168.1.254 netmask 0xffffff00

carp121: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 121 advbase 1 advskew 0

 inet 192.168.2.1 netmask 0xffffff00

carp122: flags=41<UP,RUNNING> mtu 1500

 carp: MASTER vhid 122 advbase 1 advskew 0

 inet 192.168.2.254 netmask 0xffffff00

fw1#

Listing 4 - Backup firewall interface state (fw2)

fw2# ifconfig -a

xl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:04:d1:41:9c

 media: Ethernet autoselect (10baseT)

 status: active

 inet 1.2.3.176 netmask 0xffffffe0 broadcast 1.2.3.191

xl1: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:2c:0a:c0

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 192.168.1.252 netmask 0xffffff00 broadcast 192.168.1.255

xl2: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:1f:a8:d0

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 192.168.2.252 netmask 0xffffff00 broadcast 192.168.2.255

xl3: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 address: 00:50:da:12:cc:3b

 media: Ethernet autoselect (100baseTX full-duplex)

 status: active

 inet 10.0.120.253 netmask 0xffffff00 broadcast 10.0.120.255

pflog0: flags=141<UP,RUNNING,PROMISC> mtu 33224

pfsync0: flags=41<UP,RUNNING> mtu 1348

 pfsync: syncif: xl3 syncpeer: 224.0.0.240 maxupd: 128

carp101: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 101 advbase 1 advskew 150

 inet 1.2.3.180 netmask 0xffffffe0

carp102: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 102 advbase 1 advskew 150

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 21 / 28 4/5/2006

 inet 1.2.3.181 netmask 0xffffffe0

carp103: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 103 advbase 1 advskew 150

 inet 1.2.3.182 netmask 0xffffffe0

carp104: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 104 advbase 1 advskew 150

 inet 1.2.3.183 netmask 0xffffffe0

carp111: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 111 advbase 1 advskew 150

 inet 192.168.1.1 netmask 0xffffff00

carp112: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 112 advbase 1 advskew 150

 inet 192.168.1.254 netmask 0xffffff00

carp121: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 121 advbase 1 advskew 150

 inet 192.168.2.1 netmask 0xffffff00

carp122: flags=41<UP,RUNNING> mtu 1500

 carp: BACKUP vhid 122 advbase 1 advskew 150

 inet 192.168.2.254 netmask 0xffffff00

fw2#

3.5.3. Packet Filter Logging

Firewalls logs are a crucial part of security posture monitoring. Logging by pf is performed by a daemon

pflogd, which reads the pflog0 interface and writes packet data to a binary tcpdump format log file

/var/log/pflog. Optional logging keywords are used on pf rules to enable capture of packet information

when a rule is triggered. pf rules need to specify either block or pass action to trigger a packet log entry. On

rules that keep state, only the first packet seen related to the connection will trigger a log entry. pf rule log

option syntax is shown here
25

:

 pass in log [all] on $ext_if inet proto tcp to $ext_if port 22 keep state

Will log all incoming packets destined to port 22, including all packets in the conversation if the all

modifier is specified.

Excerpts from the pf logging FAQ:

Reading a Log File

The log file written by pflogd is in binary format and cannot be read using a text editor.

tcpdump must be used to view the log.

To view the log file:

 # tcpdump -n -e -ttt -r /var/log/pflog

Note that using tcpdump(8) to watch the pflog file does not give a real-time display. A

real-time display of logged packets is achieved by using the pflog0 interface:

 # tcpdump -n -e -ttt -i pflog0

25

 Excerpt from OpenBSD pf logging FAQ, http://www.openbsd.org/faq/pf/logging.html

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 22 / 28 4/5/2006

NOTE: When examining the logs, special care should be taken with tcpdump's verbose

protocol decoding (activated via the -v command line option). Tcpdump's protocol

decoders do not have a perfect security history. At least in theory, a delayed attack could

be possible via the partial packet payloads recorded by the logging device. It is

recommended practice to move the log files off of the firewall machine before examining

them in this way.

Additional care should also be taken to secure access to the logs. By default, pflogd will

record 96 bytes of the packet in the log file. Access to the logs could provide partial

access to sensitive packet payloads (like telnet(1) or ftp(1) usernames and passwords).

Filtering Log Output

Because pflogd logs in tcpdump binary format, the full range of tcpdump features can be

used when reviewing the logs. For example, to only see packets that match a certain port:

 # tcpdump -n -e -ttt -r /var/log/pflog port 80

This can be further refined by limiting the display of packets to a certain host and port

combination:

 # tcpdump -n -e -ttt -r /var/log/pflog port 80 and host 192.168.1.3

The same idea can be applied when reading from the pflog0 interface:

 # tcpdump -n -e -ttt -i pflog0 host 192.168.4.2

Note that this has no impact on which packets are logged to the pflogd log file; the above

commands only display packets as they are being logged.

In addition to using the standard tcpdump(8) filter rules, OpenBSD's tcpdump filter

language has been extended for reading pflogd output, by specifying the following

keywords:

 ip - address family is IPv4.

 ip6 - address family is IPv6.

 on int - packet passed through the interface int.

 ifname int - same as on int.

 ruleset name - the ruleset/anchor that the packet was matched in.

 rulenum num - the filter rule that the packet matched was rule number num.

 action act - the action taken on the packet. Possible actions are pass and block.

 reason res - the reason that action was taken. Possible reasons are match, bad-

offset, fragment, short, normalize, memory, bad-timestamp, congestion,

ip-option, proto-cksum, state-mismatch, state-insert, state-limit, src-

limit, and synproxy.

 inbound - packet was inbound.

 outbound - packet was outbound.

Example:

 # tcpdump -n -e -ttt -i pflog0 inbound and action block and on wi0

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 23 / 28 4/5/2006

This display the log, in real-time, of inbound packets that were blocked on the wi0

interface.

Packet Logging Through Syslog

The design used in this paper writes pf log data to local /var/log/pflog, and sends the log data to a central

syslog server. The central syslog server is an enterprise security management system or SIEM. This central

system accepts security log data from the IDS sensors, operating system logs, vulnerability scans, and other

security data sources for aggregation and correlation. The OpenBSD pf configuration needed to be

modified to send the pflog data over syslog to the central security server.

As shown in the pf logging FAQ
26

 two shell scripts need to be added to the firewalls, and system

configuration files need to be altered. The FAQ describes these changes well and is quoted here:

First we have to create a user, pflogger, with a /sbin/nologin shell. The easiest way to

create this user is with adduser(8).

After creating the user pflogger, create the following two scripts:

/etc/pflogrotate:

 #!/bin/sh

 FILE=/home/pflogger/pflog5min.$(date "+%Y%m%d%H%M")

 kill -ALRM $(cat /var/run/pflogd.pid)

 if [$(ls -l /var/log/pflog | cut -d " " -f 8) -gt 24]; then

 mv /var/log/pflog $FILE

 chown pflogger $FILE

 kill -HUP $(cat /var/run/pflogd.pid)

 fi

/home/pflogger/pfl2sysl:

 #!/bin/sh

 # feed rotated pflog file(s) to syslog

 # do not start if another instance of this script is already running

 pgrep pfl2sysl >/dev/null 2>&1

 if [$? -ne 0] ; then

 for logfile in /home/pflogger/pflog5min* ; do

 if [-f "$logfile"] ; then

 tcpdump -n -e -ttt -r $logfile | logger -t pf -p

local0.info

 rm $logfile

 fi

 done

 fi

Edit root's cron job:

 # crontab -u root -e

Add the following two lines:

 # rotate pf log file every 5 minutes

26

 OpenBSD pf logging FAQ, http://www.openbsd.org/faq/pf/logging.html

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 24 / 28 4/5/2006

 0-59/5 * * * * /bin/sh /etc/pflogrotate

Create a cron job for user pflogger:

 # crontab -u pflogger -e

Add the following two lines:

 # feed rotated pflog file(s) to syslog

 0-59/5 * * * * /bin/sh /home/pflogger/pfl2sysl

Add the following line to /etc/syslog.conf:

 local0.info /var/log/pflog.txt

If you also want to log to a remote log server, add the line:

 local0.info @syslogger

Make sure host syslogger has been defined in the hosts(5) file.

Create the file /var/log/pflog.txt to allow syslog to log to that file.

 # touch /var/log/pflog.txt

Make syslogd notice the changes by restarting it:

 # kill -HUP $(cat /var/run/syslog.pid)

All logged packets are now sent to /var/log/pflog.txt. If the second line is added they are

sent to the remote logging host syslogger as well.

The script /etc/pflogrotate now processes and then deletes /var/log/pflog so rotation of

pflog by newsyslog(8) is no longer necessary and should be disabled. However,

/var/log/pflog.txt replaces /var/log/pflog and rotation of it should be activated. Change

/etc/newsyslog.conf as follows:

 #/var/log/pflog 600 3 250 * ZB /var/run/pflogd.pid

 /var/log/pflog.txt 600 7 * 24

PF will now log in ASCII to /var/log/pflog.txt. If so configured in /etc/syslog.conf, it will

also log to a remote server. The logging is not immediate but it can take up to about 5-6

minutes (the cron job interval) before the logged packets appear in the file.

After configuring both firewalls with the above procedure, the security monitoring tool was receiving packet

log data:

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 25 / 28 4/5/2006

Figure 9 - Security Manager Log Data

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 26 / 28 4/5/2006

4. Solution Benefit Summary

The single largest impact of this solution is providing high quality firewall security services continuously

even in the case of a primary firewall failure. This solution has shown that an economical alternative to

commercial high availability can be built from open source projects.

An interesting side effect of implementing an HA solution is the ability to take arbitrary firewalls offline

without impacting production business functionality. This makes it significantly easier to maintain a regular

maintenance and patching schedule – which in turn improves the overall security posture of the

organization.

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 27 / 28 4/5/2006

Appendices

A. References

1. Firewall Failover with pfsync and CARP, Ryan McBride, http://www.countersiege.com/doc/pfsync-

carp/

2. Packet Filter (pf) FAQ, ftp://ftp.openbsd.org/pub/OpenBSD/doc/pf-faq.pdf

3. High Availability Design, Techniques and Processes, Piedad & Hawkins, Prentice hall, 2001

4. Self-Managed Systems and Services, Jean-Philippe Martin-Flatin, Joe Sventek, and Kurt Geihs,

Communications of the ACM, March 2006/Vol. 49, No. 3, pg 37

5. SANS (System and Network Security) Reading Room documents – Firewall and Perimeter Security

www.sans.org/rr/

6. Internetworking with TCP/IP Volume III, Douglas Comer, David Stevens, Prentice-Hall, 1993

7. Building Open Source Network Security Tools, Mike Schiffman, Wiley, 2003

8. National Institute of Standards and Technology (NIST) – Special Publications,

http://csrc.nist.gov/publications/nistpubs/800-41/sp800-41.pdf, SP800-41 Guidelines on Firewalls

and Firewall Policy

9. National Institute of Standards and Technology (NIST) – Special Publications,

http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf, SP800-14 Generally Accepted

Principles and Practices for Securing Information Technology Systems

10. Network Nirvana, Joanna Holmes, Packet Magazine, First Quarter 2006, pg 29

B. Operating System Security

NIST is a US Government agency that publishes best practices documents related to network and computer

security.

The National Institute of Standards and Technology (NIST) is cooperating with other

federal agencies, IT vendors, and with industry to advance the development and use of

security configuration checklists. A security configuration checklist (sometimes called a

security configuration guide, lockdown guide, hardening guide, security technical

implementation guide, or benchmark) is basically a series of instructions for configuring

an information technology (IT) product to an operational environment. Checklists can be

useful tools for reducing vulnerabilities to systems, especially for small organizations with

limited resources.

http://csrc.nist.gov/publications/nistpubs/

Special Publication 800-70: Security Configuration Checklists Program for IT Products,

http://csrc.nist.gov/checklists/docs/SP_800-70_20050526.pdf

SANS is a vendor neutral industry organization that focuses on Systems and Network Security.

SANS is the most trusted and by far the largest source for information security training

and certification in the world. It also develops, maintains, and makes available at no cost,

the largest collection of research documents about various aspects of information security,

and it operates the Internet's early warning system - Internet Storm Center. The SANS

(SysAdmin, Audit, Network, Security) Institute was established in 1989 as a cooperative

research and education organization. Its programs now reach more than 165,000 security

professionals, auditors, system administrators, network administrators, chief information

security officers, and CIOs who share the lessons they are learning and jointly find

High Availability Firewalls using OpenBSD pf, pfsync and CARP

COMP503: IT Hardware and Software TME #3 –Research Paper

Allen Pomeroy, ID: 8702235 28 / 28 4/5/2006

solutions to the challenges they face. At the heart of SANS are the many security

practitioners in government agencies, corporations, and universities around the world who

invest hundreds of hours each year in research and teaching to help the entire information

security community.

SANS InfoSec Reading Room Documents on Computer and Network Security

http://www.sans.org/rr/

C. Network Interface Redundancy

Ethernet network interface resiliency is required to build switching fabric high availability. Keep in mind

that terminology in use differs between some open source projects and the enterprise networking vendors.

In many cases, the term channel bonding, is referring to active / passive channel failover versus channel

aggregation. Pairing the Ethernet channel bonding capability inherent in the Linux and some *BSD

kernels with multiple switches and host NICs results in a resilient network backbone to build on. If there is

a switch failure, the channel bonding software will redirect Ethernet frames out the surviving interface with

no loss of TCP sessions. Channel aggregation features are beginning to be common in many channel

bonding projects, resulting in substantially higher throughputs as multiple Ethernet channels are used in

parallel.

